18 research outputs found

    Visualizing bacteria-carrying particles in the operating room: exposing invisible risks

    Get PDF
    Surgical site infections occur due to contamination of the wound area by bacteria-carrying particles during the surgery. There are many surgery preparation conditions that might block the path of clean air in the operating room, consequently increasing the contamination level at the surgical zone. The main goal of the current study is to translate this knowledge into a perceivable tool for the medical staff by applying state-of-the-art simulation and visualization techniques. In this work, the results of numerical simulations are used to inform visualization. These results predict the airflow fields in the operating rooms equipped with mixing, laminar airflow and temperature-controlled airflow ventilation systems. In this regard, the visualization uses a virtual reality interface to translate the computational fluid dynamics simulations into usable animations. The results of this study help the surgical and technical staff to update their procedures by using the provided virtual tools.publishedVersio

    Transport of Contaminated Agents in Hospital Wards – Exposure Control with a Personalized Healthcare Ventilation System: Numerical Study

    Get PDF
    Contaminated agents in hospital wards are the source of nosocomial infections known as hospital-acquired infection (HAI) or healthcare-associated infections (HAIs). Ventilation plays an essential role in the spreading and minimizing the transport of airborne infectious diseases such as Covid-19 and SARS in the hospital ward. The goal of this study is to explore elimination strategies for an efficient removal of contaminated agents, targeting the influence of using local air diffuser and exhaust. Computational Fluid Dynamics (CFD) technique was used to model the airflow field and contamination distribution in the ward environment. Simulated results showed that the bacteria spread from a patient confined to his bed was limited and under certain conditions significantly eliminated. Consequently, a relatively high efficiency of particle removal and a moderated transmission were obtained. Thus, this strategy is able to shorten the exposure time of patient and healthcare staff, as a result, mitigating cross-infection risk at the hospital.publishedVersio

    Evaluation of Longitudinal Tissue Velocity and Deformation Imaging in Akinetic Non-viable Apical Segments of Left Ventricular Myocardium

    Get PDF
    Introduction: The use of tissue velocity and strain rate imaging is proposed for the quantification of non-viable myocardium. This study is aimed at investigating the differences in tissue velocity and strain rate imaging indices between non-viable left ventricular apical segments and the normal segments using segment-by-segment comparison.Materials and Method: Thirty-two patients with akinetic left ventricular apical segments and without viability were selected using two-dimensional echocardiography and dobutamine stress echocardiography; 32 individuals with normal echocardiography and coronary angiography formed the normal group. Peak systolic velocity, peak systolic strain, and strain rate were measured in the four left ventricular apical segments and the apex 17th segment.Results: The patient group had a significantly lower ejection fraction (26.88±6.06% vs. 56.56±2.36%; p<0.001). Overall, the patient group had significantly lower resting peak systolic velocity, systolic strain, and strain rate. In the segment-by-segment comparison, only systolic strain showed a remarkable reduction in the patient group, while reduction in Sm and strain rate were not significant in all the segments. After dobutamine stress echocardiography, only systolic strain showed an insignificant increase compared to the resting values. In the apex 17th segment, Sm showed significant reduction in the patient group.Conclusion: The ST in apical segments may be used as a quantitative index for detecting akinesia both at rest and after dobutamine infusion. Reduction in Sm can be used as a marker of akinesia in the apical cap at rest

    Indoor air quality and health in schools: a critical review for developing the roadmap for the future school environment

    Get PDF
    Several research studies have ranked indoor pollution among the top environmental risks to public health in recent years. Good indoor air quality is an essential component of a healthy indoor environment and significantly affects human health and well-being. Poor air quality in such environments may cause respiratory disease for millions of pupils around the globe and, in the current pandemic-dominated era, require ever more urgent actions to tackle the burden of its impacts. The poor indoor quality in such environments could result from poor management, operation, maintenance, and cleaning. Pupils are a different segment of the population from adults in many ways, and they are more exposed to the poor indoor environment: They breathe in more air per unit weight and are more sensitive to heat/cold and moisture. Thus, their vulnerability is higher than adults, and poor conditions may affect proper development. However, a healthy learning environment can reduce the absence rate, improves test scores, and enhances pupil/teacher learning/teaching productivity. In this article, we analyzed recent literature on indoor air quality and health in schools, with the primary focus on ventilation, thermal comfort, productivity, and exposure risk. This study conducts a comprehensive review to summarizes the existing knowledge to highlight the latest research and solutions and proposes a roadmap for the future school environment. In conclusion, we summarize the critical limitations of the existing studies, reveal insights for future research directions, and propose a roadmap for further improvements in school air quality. More parameters and specific data should be obtained from in-site measurements to get a more in-depth understanding at contaminant characteristics. Meanwhile, site-specific strategies for different school locations, such as proximity to transportation routes and industrial areas, should be developed to suit the characteristics of schools in different regions. The socio-economic consequences of health and performance effects on children in classrooms should be considered. There is a great need for more comprehensive studies with larger sample sizes to study on environmental health exposure, student performance, and indoor satisfaction. More complex mitigation measures should be evaluated by considering energy efficiency, IAQ and health effects

    Computational fluid dynamics application in indoor air quality and health

    No full text
    Indoor air quality directly affects the comfort, performance, and well-being of occupants. Indoor pollution can cause immediate or long-term health effects and has been responsible for 4.1% of global deaths in recent decades. In operating rooms, providing a high indoor air quality is especially critical as surgical site infection can occur in patients due to air contamination in operating rooms. Surgical site infections due to antibiotic resistant bacteria may threaten the safety and lives of millions of people each year. To moderate and reduce indoor contamination, it is necessary to select a proper ventilation strategy.Improving ventilation system performance requires a deep understanding of airflow patterns and contamination distribution. This thesis adopted computational fluid dynamics to evaluate airflow patterns and the spread of airborne contaminations in indoor environments. Moreover, we sought to provide an approach to facilitate transferring the obtained knowledge to medical experts and decisionmakers to reduce the infection risk after the surgery. The use of warming blankets has raised the concern about surgical site infections. Warming blankets are used to prevent hypothermia in patients during surgery. However, our results showed that these warming blankets reduce the bacteria-carrying particles level at the wound due to warm upward airflows. Surgical lamps can block the airflow and generate a low-velocity area under the lamp that increases the accumulation of contaminants. The simulation results revealed that a novel fan-mounted surgical lamp reduced the contamination level to an acceptable range for infection-prone surgeries. This novel surgical lamp successfully reduced contamination in the operating room supplied with both turbulent mixing and laminar airflow ventilations. In another study, we implemented a protective curtain and showed that this strategy could significantly reduce the exposure level of the medical team to a patient with infectious respiratory disease. This novel protective curtain is located between the patient’s upper body and the lower part during surgery. We found a 57% reduction in bacteria-carrying particle concentration at the wound by adopting this curtain. Thus, using this protective curtain can reduce the exposure level of both patient and surgical team in the operating room. Besides investigating the performance of ventilation systems in hospitals, we investigated the application of diffuse ceilings ventilations in clinics, especially waiting rooms. Diffuse ceiling ventilation systems are common air distribution systems in offices and schools. Based on simulation results, a diffuse ceiling with a central opening and evenly distributed heat loads resulted in the highest cooling capacity and thermal comfort in clinic waiting rooms. We have visualised the airflow field and airborne particles in operating rooms with the help of virtual reality techniques. We found the virtual reality environment more engaging to understand the airflow field and particle movements in operating rooms.Luftkvaliteten inomhus pĂ„verkar mĂ€nniskors komfort, ochprestationsförmĂ„ga. Luftföroreningar inomhus kan orsaka omedelbaraoch lĂ„ngvariga hĂ€lsoeffekter och har orsakat 4,1 % av de globala dödsfallenunder de senaste decennierna. I operationssalar pĂ„ sjukhus Ă€r det viktigtatt tillhandahĂ„lla god luftkvalitet. Infektioner i samband med operationkan drabba patienter pĂ„ grund av förorenad luft i operationssalen. Förekomst av infektioner i samband med kirurgiska ingrepp, och tillföljd av antibiotikaresistenta bakterier kan hota patientsĂ€kerheten förmiljontals personer varje Ă„r. För att kontrollera och minska föroreningarinomhus Ă€r det nödvĂ€ndigt att vĂ€lja en korrekt ventilationsstrategi. För attförbĂ€ttra ventilationssystemets prestanda krĂ€vs förstĂ„else av hurventilationsluften strömmar och hur föroreningar sprider sig i rum. I denna avhandling anvĂ€nds numerisk strömningsmekanik ochexperimentella data för att utvĂ€rdera luftflödesmönster och spridning avluftburna föroreningar i inomhusmiljöer. Dessutom avser detta arbete atttillhandahĂ„lla ett tillvĂ€gagĂ„ngssĂ€tt för att underlĂ€tta kunskapsöverföringtill medicinska experter och beslutsfattare för att minska infektionsriskenefter operationer. Det finns oro för att patienter ska drabbas av postoperativasĂ„rinfektioner pĂ„ grund av anvĂ€ndning av medicintekniska produkter ioperationssalar, sĂ„som vĂ€rmande filtar. VĂ€rmefiltar anvĂ€nds för attförhindra hypotermi hos patienter. VĂ„ra resultat visade dock attvĂ€rmefiltar minskar nivĂ„n av bakteriebĂ€rande partiklar vid sĂ„ret pĂ„ grundav uppĂ„tgĂ„ende varma luftflöden. Operationslampor blockerar luftflödet och genererar ett omrĂ„de medlĂ„g lufthastighet som ökar risken för ansamling av kontaminanter.Simuleringsresultaten visade att en ny flĂ€ktmonterad operationslampaminskade kontamineringsnivĂ„n till acceptabel nivĂ„ för infektionskĂ€nslig kirurgi. Den nya flĂ€kten minskade kontaminationen i operationssalen vidsĂ„vĂ€l turbulent som vid laminĂ€rt luftflöde. I en annan studie implementerade vi en skyddande gardin som visadeatt den avsevĂ€rt minskade exponeringsnivĂ„n för det kirurgiska teametunder operation av en patient med infektion i luftvĂ€garna. Dessutomrapporterades en 57 % minskning av den bakteriebĂ€randepartikelkoncentrationen vid sĂ„ret dĂ„ gardinen anvĂ€ndes. SkyddsgardinenförbĂ€ttrar sĂ„ledes sĂ€kerheten bĂ„de för patienten och för operationsteamet. Vi undersökte anvĂ€ndning av diffunderande takventilation pĂ„ kliniker.Diffunderande takventilation Ă€r vanligt förekommandeluftdistributionssystem i kontor och skolor. Baserat pĂ„ simuleringar, gavinnertak med diffunderande tilluft ur central öppning, vid jĂ€mnt fördeladevĂ€rmelaster, den högsta kylkapaciteten och termiska komforten iklinikernas vĂ€ntrum. För visualisering av numeriska simuleringar anvĂ€ndes teknik förvirtuell verklighet. Den virtuella verklighetsmiljön gav ökad upplevelse ochförstĂ„else av luftflödesfĂ€ltet och partikelrörelserna i operationssalar.QC 20220502</p

    A new generation of hospital operating room ventilation

    No full text
    Surgical site infection is responsible for 38 percent of reported infections after surgery. This infection increases mortality and treatment costs, and prolongs the hospitalization of patients. Bacteria-carrying particles are the main cause of surgical site infection and one of the main sources of these particles is skin fragments released from the surgical personnel during an ongoing surgery. Ventilation systems reduce the concentration of bacteria-carrying particles by supplying clean air in the operating room. The performance of operating room ventilation systems is affected by internal disruptions such as medical equipment, surgical lamps, number of staff and their behaviour during the surgery. Using computational fluid dynamics, this thesis investigates the airflow behaviour and distribution of the contamination in the operating room under the presence of various internal disruptions. In this regard, three common ventilation systems are considered: laminar airflow, turbulent mixing and temperature-controlled airflow ventilations. This study tries to overcome the weaknesses of the ventilation systems by providing sustainable solutions and continuously being in contact with design companies. It is common to use warming blankets to prevent reduction in the core body temperature of the patient during major surgeries. However, there is a major concern that these blankets disrupt the supplied airflow, which results in rising contaminant concentration. Most of the studies about warming blankets are clinical works and it is still not clear whether or not these blankets should be used. The results of the present study show that using warming blankets had no impact on increase of contamination level at the surgical zone. However, one common type of warming blanket – a forced-air warming blanket – can considerably increase the concentration of bacteria-carrying particles at the wound area if it becomes contaminated. The simulated results of the airflow field and particle tracking showed that the laminar airflow ventilation system was disturbed more easily by the local heat loads than overall heat loads in the operating room. Surgical lamps are considered as an obstacle in the supplied airflow path. These lamps create a stagnant area above the operating table and increase the contamination level. In this regard, a novel design of surgical lamp, a fan-mounted surgical lamp, was introduced to operating rooms.This device was used in the operating rooms equipped with laminar airflow and mixing ventilation system. The simulated results revealed that this lamp significantly reduced the contamination level at the operating table. Visualization techniques were adopted to teach and improve the understanding of surgical personnel about transmission of contaminated particles in operating rooms. Here, a virtual and augmented reality interface was used to visualize the impact of differences in ventilation principle, surgical staff constellation and work practice.Infektioner relaterade till kirurgiskt ingrepp utgör 38 % av rapporterade infektioner efter operation. Dessa infektioner ökar dödligheten och behandlingskostnaderna samt förlĂ€nger patienternas sjukhusvistelse. BakteriebĂ€rande partiklar Ă€r den frĂ€msta orsaken till infektion vid kirurgi. HuvudkĂ€llan till dessa partiklar Ă€r hudfragment som frigörs frĂ„n kirurgisk personal under en pĂ„gĂ„ende operation. Genom att tillföra ren luft via ventilationssystemet kan koncentrationen av baktebĂ€rande partiklar i operationssalen minskas. Ventilationssystemets förmĂ„ga att ventilera salen pĂ„verkas av föremĂ„l som stör luftströmmen, som exempel medicinsk utrustning, kirurgiska lampor samt av nĂ€rvarande personal och deras beteende under operationen. Med avancerade numeriska strömningsberĂ€kningar undersöks i denna avhandling luftflöden och fördelningen av föroreningar i operationssalen under inverkan av sĂ„dana störningar. Tre olika ventilationssystem inkluderas. Ett för laminĂ€rt luftflöde, ett för turbulent omblandning och ett för temperaturreglerad luftströmning. I studien kartlĂ€ggs ventilationssystemens funktion och relevansen prövas i ett kontinuerligt samarbete med tillverkande industri. AnvĂ€ndning av vĂ€rmefiltar förekommer under större operationer för att hĂ„lla patientens kroppstemperatur stabil. Det finns emellertid en stor oro för att dessa filtar stör det tillförda luftflödet och dĂ€rmed ökar föroreningsnivĂ„n. En vanlig typ av vĂ€rmefilt med forcerad varmluft kan om den Ă€r förorenad avsevĂ€rt öka koncentrationen av bakteriebĂ€rande partiklar i sĂ„romrĂ„det. De flesta undersökningar om vĂ€rmande filtar Ă€r kliniska studier och det Ă€r fortfarande inte helt klarlagt i vilken mĂ„n och hur dessa filtar skall anvĂ€ndas. Denna studie visar emellertid att anvĂ€ndning av vĂ€rmefiltar inte pĂ„verkar föroreningsnivĂ„n i den kirurgiska zonen. Gjorda datorsimuleringar av luftflödesfĂ€ltet och partikelspĂ„rning visar att det laminĂ€ra ventilationsflödet lĂ€ttare störs av lokala vĂ€rmebelastningarna Ă€n av generella vĂ€rmebelastningar i operationssalen. Kirurgiska lampor betraktas som hinder i en planerad luftflödesvĂ€g. Lampor kan skapa en stillastĂ„ende luftmassa ovanför operationsbordet och dĂ€rmed öka föroreningsnivĂ„n. För detta introduceras en ny design av kirurgisk lampa, en flĂ€ktmonterad kirurgisk lampa för operationsrum, utrustade med laminĂ€rt luftflöde och omblandning. Simulerade resultat visar att denna nya kirurgiska lampa signifikant minskar föroreningsnivĂ„n vid operationsbordet. Visualiseringsteknik anvĂ€ndes i denna studie för att förbĂ€ttra förstĂ„elsen hos kirurgisk personal om hur förorenade partiklar kan spridas i operationssalen. Med ett virtuellt och förstĂ€rkt grĂ€nssnitt visualiserades föroreningshalter i rumsluften dĂ„ olika typer av ventilationssystem anvĂ€ndes. Visualiseringen visar ocksĂ„ hur kirurgigruppens storlek och arbetsstĂ€llning under operation pĂ„verkar spridningen av föroreningar.QC 20201103</p

    A new generation of hospital operating room ventilation

    No full text
    Surgical site infection is responsible for 38 percent of reported infections after surgery. This infection increases mortality and treatment costs, and prolongs the hospitalization of patients. Bacteria-carrying particles are the main cause of surgical site infection and one of the main sources of these particles is skin fragments released from the surgical personnel during an ongoing surgery. Ventilation systems reduce the concentration of bacteria-carrying particles by supplying clean air in the operating room. The performance of operating room ventilation systems is affected by internal disruptions such as medical equipment, surgical lamps, number of staff and their behaviour during the surgery. Using computational fluid dynamics, this thesis investigates the airflow behaviour and distribution of the contamination in the operating room under the presence of various internal disruptions. In this regard, three common ventilation systems are considered: laminar airflow, turbulent mixing and temperature-controlled airflow ventilations. This study tries to overcome the weaknesses of the ventilation systems by providing sustainable solutions and continuously being in contact with design companies. It is common to use warming blankets to prevent reduction in the core body temperature of the patient during major surgeries. However, there is a major concern that these blankets disrupt the supplied airflow, which results in rising contaminant concentration. Most of the studies about warming blankets are clinical works and it is still not clear whether or not these blankets should be used. The results of the present study show that using warming blankets had no impact on increase of contamination level at the surgical zone. However, one common type of warming blanket – a forced-air warming blanket – can considerably increase the concentration of bacteria-carrying particles at the wound area if it becomes contaminated. The simulated results of the airflow field and particle tracking showed that the laminar airflow ventilation system was disturbed more easily by the local heat loads than overall heat loads in the operating room. Surgical lamps are considered as an obstacle in the supplied airflow path. These lamps create a stagnant area above the operating table and increase the contamination level. In this regard, a novel design of surgical lamp, a fan-mounted surgical lamp, was introduced to operating rooms.This device was used in the operating rooms equipped with laminar airflow and mixing ventilation system. The simulated results revealed that this lamp significantly reduced the contamination level at the operating table. Visualization techniques were adopted to teach and improve the understanding of surgical personnel about transmission of contaminated particles in operating rooms. Here, a virtual and augmented reality interface was used to visualize the impact of differences in ventilation principle, surgical staff constellation and work practice.Infektioner relaterade till kirurgiskt ingrepp utgör 38 % av rapporterade infektioner efter operation. Dessa infektioner ökar dödligheten och behandlingskostnaderna samt förlĂ€nger patienternas sjukhusvistelse. BakteriebĂ€rande partiklar Ă€r den frĂ€msta orsaken till infektion vid kirurgi. HuvudkĂ€llan till dessa partiklar Ă€r hudfragment som frigörs frĂ„n kirurgisk personal under en pĂ„gĂ„ende operation. Genom att tillföra ren luft via ventilationssystemet kan koncentrationen av baktebĂ€rande partiklar i operationssalen minskas. Ventilationssystemets förmĂ„ga att ventilera salen pĂ„verkas av föremĂ„l som stör luftströmmen, som exempel medicinsk utrustning, kirurgiska lampor samt av nĂ€rvarande personal och deras beteende under operationen. Med avancerade numeriska strömningsberĂ€kningar undersöks i denna avhandling luftflöden och fördelningen av föroreningar i operationssalen under inverkan av sĂ„dana störningar. Tre olika ventilationssystem inkluderas. Ett för laminĂ€rt luftflöde, ett för turbulent omblandning och ett för temperaturreglerad luftströmning. I studien kartlĂ€ggs ventilationssystemens funktion och relevansen prövas i ett kontinuerligt samarbete med tillverkande industri. AnvĂ€ndning av vĂ€rmefiltar förekommer under större operationer för att hĂ„lla patientens kroppstemperatur stabil. Det finns emellertid en stor oro för att dessa filtar stör det tillförda luftflödet och dĂ€rmed ökar föroreningsnivĂ„n. En vanlig typ av vĂ€rmefilt med forcerad varmluft kan om den Ă€r förorenad avsevĂ€rt öka koncentrationen av bakteriebĂ€rande partiklar i sĂ„romrĂ„det. De flesta undersökningar om vĂ€rmande filtar Ă€r kliniska studier och det Ă€r fortfarande inte helt klarlagt i vilken mĂ„n och hur dessa filtar skall anvĂ€ndas. Denna studie visar emellertid att anvĂ€ndning av vĂ€rmefiltar inte pĂ„verkar föroreningsnivĂ„n i den kirurgiska zonen. Gjorda datorsimuleringar av luftflödesfĂ€ltet och partikelspĂ„rning visar att det laminĂ€ra ventilationsflödet lĂ€ttare störs av lokala vĂ€rmebelastningarna Ă€n av generella vĂ€rmebelastningar i operationssalen. Kirurgiska lampor betraktas som hinder i en planerad luftflödesvĂ€g. Lampor kan skapa en stillastĂ„ende luftmassa ovanför operationsbordet och dĂ€rmed öka föroreningsnivĂ„n. För detta introduceras en ny design av kirurgisk lampa, en flĂ€ktmonterad kirurgisk lampa för operationsrum, utrustade med laminĂ€rt luftflöde och omblandning. Simulerade resultat visar att denna nya kirurgiska lampa signifikant minskar föroreningsnivĂ„n vid operationsbordet. Visualiseringsteknik anvĂ€ndes i denna studie för att förbĂ€ttra förstĂ„elsen hos kirurgisk personal om hur förorenade partiklar kan spridas i operationssalen. Med ett virtuellt och förstĂ€rkt grĂ€nssnitt visualiserades föroreningshalter i rumsluften dĂ„ olika typer av ventilationssystem anvĂ€ndes. Visualiseringen visar ocksĂ„ hur kirurgigruppens storlek och arbetsstĂ€llning under operation pĂ„verkar spridningen av föroreningar.QC 20201103</p

    A new generation of hospital operating room ventilation

    No full text
    Surgical site infection is responsible for 38 percent of reported infections after surgery. This infection increases mortality and treatment costs, and prolongs the hospitalization of patients. Bacteria-carrying particles are the main cause of surgical site infection and one of the main sources of these particles is skin fragments released from the surgical personnel during an ongoing surgery. Ventilation systems reduce the concentration of bacteria-carrying particles by supplying clean air in the operating room. The performance of operating room ventilation systems is affected by internal disruptions such as medical equipment, surgical lamps, number of staff and their behaviour during the surgery. Using computational fluid dynamics, this thesis investigates the airflow behaviour and distribution of the contamination in the operating room under the presence of various internal disruptions. In this regard, three common ventilation systems are considered: laminar airflow, turbulent mixing and temperature-controlled airflow ventilations. This study tries to overcome the weaknesses of the ventilation systems by providing sustainable solutions and continuously being in contact with design companies. It is common to use warming blankets to prevent reduction in the core body temperature of the patient during major surgeries. However, there is a major concern that these blankets disrupt the supplied airflow, which results in rising contaminant concentration. Most of the studies about warming blankets are clinical works and it is still not clear whether or not these blankets should be used. The results of the present study show that using warming blankets had no impact on increase of contamination level at the surgical zone. However, one common type of warming blanket – a forced-air warming blanket – can considerably increase the concentration of bacteria-carrying particles at the wound area if it becomes contaminated. The simulated results of the airflow field and particle tracking showed that the laminar airflow ventilation system was disturbed more easily by the local heat loads than overall heat loads in the operating room. Surgical lamps are considered as an obstacle in the supplied airflow path. These lamps create a stagnant area above the operating table and increase the contamination level. In this regard, a novel design of surgical lamp, a fan-mounted surgical lamp, was introduced to operating rooms.This device was used in the operating rooms equipped with laminar airflow and mixing ventilation system. The simulated results revealed that this lamp significantly reduced the contamination level at the operating table. Visualization techniques were adopted to teach and improve the understanding of surgical personnel about transmission of contaminated particles in operating rooms. Here, a virtual and augmented reality interface was used to visualize the impact of differences in ventilation principle, surgical staff constellation and work practice.Infektioner relaterade till kirurgiskt ingrepp utgör 38 % av rapporterade infektioner efter operation. Dessa infektioner ökar dödligheten och behandlingskostnaderna samt förlĂ€nger patienternas sjukhusvistelse. BakteriebĂ€rande partiklar Ă€r den frĂ€msta orsaken till infektion vid kirurgi. HuvudkĂ€llan till dessa partiklar Ă€r hudfragment som frigörs frĂ„n kirurgisk personal under en pĂ„gĂ„ende operation. Genom att tillföra ren luft via ventilationssystemet kan koncentrationen av baktebĂ€rande partiklar i operationssalen minskas. Ventilationssystemets förmĂ„ga att ventilera salen pĂ„verkas av föremĂ„l som stör luftströmmen, som exempel medicinsk utrustning, kirurgiska lampor samt av nĂ€rvarande personal och deras beteende under operationen. Med avancerade numeriska strömningsberĂ€kningar undersöks i denna avhandling luftflöden och fördelningen av föroreningar i operationssalen under inverkan av sĂ„dana störningar. Tre olika ventilationssystem inkluderas. Ett för laminĂ€rt luftflöde, ett för turbulent omblandning och ett för temperaturreglerad luftströmning. I studien kartlĂ€ggs ventilationssystemens funktion och relevansen prövas i ett kontinuerligt samarbete med tillverkande industri. AnvĂ€ndning av vĂ€rmefiltar förekommer under större operationer för att hĂ„lla patientens kroppstemperatur stabil. Det finns emellertid en stor oro för att dessa filtar stör det tillförda luftflödet och dĂ€rmed ökar föroreningsnivĂ„n. En vanlig typ av vĂ€rmefilt med forcerad varmluft kan om den Ă€r förorenad avsevĂ€rt öka koncentrationen av bakteriebĂ€rande partiklar i sĂ„romrĂ„det. De flesta undersökningar om vĂ€rmande filtar Ă€r kliniska studier och det Ă€r fortfarande inte helt klarlagt i vilken mĂ„n och hur dessa filtar skall anvĂ€ndas. Denna studie visar emellertid att anvĂ€ndning av vĂ€rmefiltar inte pĂ„verkar föroreningsnivĂ„n i den kirurgiska zonen. Gjorda datorsimuleringar av luftflödesfĂ€ltet och partikelspĂ„rning visar att det laminĂ€ra ventilationsflödet lĂ€ttare störs av lokala vĂ€rmebelastningarna Ă€n av generella vĂ€rmebelastningar i operationssalen. Kirurgiska lampor betraktas som hinder i en planerad luftflödesvĂ€g. Lampor kan skapa en stillastĂ„ende luftmassa ovanför operationsbordet och dĂ€rmed öka föroreningsnivĂ„n. För detta introduceras en ny design av kirurgisk lampa, en flĂ€ktmonterad kirurgisk lampa för operationsrum, utrustade med laminĂ€rt luftflöde och omblandning. Simulerade resultat visar att denna nya kirurgiska lampa signifikant minskar föroreningsnivĂ„n vid operationsbordet. Visualiseringsteknik anvĂ€ndes i denna studie för att förbĂ€ttra förstĂ„elsen hos kirurgisk personal om hur förorenade partiklar kan spridas i operationssalen. Med ett virtuellt och förstĂ€rkt grĂ€nssnitt visualiserades föroreningshalter i rumsluften dĂ„ olika typer av ventilationssystem anvĂ€ndes. Visualiseringen visar ocksĂ„ hur kirurgigruppens storlek och arbetsstĂ€llning under operation pĂ„verkar spridningen av föroreningar.QC 20201103</p

    Computational fluid dynamics application in indoor air quality and health

    No full text
    Indoor air quality directly affects the comfort, performance, and well-being of occupants. Indoor pollution can cause immediate or long-term health effects and has been responsible for 4.1% of global deaths in recent decades. In operating rooms, providing a high indoor air quality is especially critical as surgical site infection can occur in patients due to air contamination in operating rooms. Surgical site infections due to antibiotic resistant bacteria may threaten the safety and lives of millions of people each year. To moderate and reduce indoor contamination, it is necessary to select a proper ventilation strategy.Improving ventilation system performance requires a deep understanding of airflow patterns and contamination distribution. This thesis adopted computational fluid dynamics to evaluate airflow patterns and the spread of airborne contaminations in indoor environments. Moreover, we sought to provide an approach to facilitate transferring the obtained knowledge to medical experts and decisionmakers to reduce the infection risk after the surgery. The use of warming blankets has raised the concern about surgical site infections. Warming blankets are used to prevent hypothermia in patients during surgery. However, our results showed that these warming blankets reduce the bacteria-carrying particles level at the wound due to warm upward airflows. Surgical lamps can block the airflow and generate a low-velocity area under the lamp that increases the accumulation of contaminants. The simulation results revealed that a novel fan-mounted surgical lamp reduced the contamination level to an acceptable range for infection-prone surgeries. This novel surgical lamp successfully reduced contamination in the operating room supplied with both turbulent mixing and laminar airflow ventilations. In another study, we implemented a protective curtain and showed that this strategy could significantly reduce the exposure level of the medical team to a patient with infectious respiratory disease. This novel protective curtain is located between the patient’s upper body and the lower part during surgery. We found a 57% reduction in bacteria-carrying particle concentration at the wound by adopting this curtain. Thus, using this protective curtain can reduce the exposure level of both patient and surgical team in the operating room. Besides investigating the performance of ventilation systems in hospitals, we investigated the application of diffuse ceilings ventilations in clinics, especially waiting rooms. Diffuse ceiling ventilation systems are common air distribution systems in offices and schools. Based on simulation results, a diffuse ceiling with a central opening and evenly distributed heat loads resulted in the highest cooling capacity and thermal comfort in clinic waiting rooms. We have visualised the airflow field and airborne particles in operating rooms with the help of virtual reality techniques. We found the virtual reality environment more engaging to understand the airflow field and particle movements in operating rooms.Luftkvaliteten inomhus pĂ„verkar mĂ€nniskors komfort, ochprestationsförmĂ„ga. Luftföroreningar inomhus kan orsaka omedelbaraoch lĂ„ngvariga hĂ€lsoeffekter och har orsakat 4,1 % av de globala dödsfallenunder de senaste decennierna. I operationssalar pĂ„ sjukhus Ă€r det viktigtatt tillhandahĂ„lla god luftkvalitet. Infektioner i samband med operationkan drabba patienter pĂ„ grund av förorenad luft i operationssalen. Förekomst av infektioner i samband med kirurgiska ingrepp, och tillföljd av antibiotikaresistenta bakterier kan hota patientsĂ€kerheten förmiljontals personer varje Ă„r. För att kontrollera och minska föroreningarinomhus Ă€r det nödvĂ€ndigt att vĂ€lja en korrekt ventilationsstrategi. För attförbĂ€ttra ventilationssystemets prestanda krĂ€vs förstĂ„else av hurventilationsluften strömmar och hur föroreningar sprider sig i rum. I denna avhandling anvĂ€nds numerisk strömningsmekanik ochexperimentella data för att utvĂ€rdera luftflödesmönster och spridning avluftburna föroreningar i inomhusmiljöer. Dessutom avser detta arbete atttillhandahĂ„lla ett tillvĂ€gagĂ„ngssĂ€tt för att underlĂ€tta kunskapsöverföringtill medicinska experter och beslutsfattare för att minska infektionsriskenefter operationer. Det finns oro för att patienter ska drabbas av postoperativasĂ„rinfektioner pĂ„ grund av anvĂ€ndning av medicintekniska produkter ioperationssalar, sĂ„som vĂ€rmande filtar. VĂ€rmefiltar anvĂ€nds för attförhindra hypotermi hos patienter. VĂ„ra resultat visade dock attvĂ€rmefiltar minskar nivĂ„n av bakteriebĂ€rande partiklar vid sĂ„ret pĂ„ grundav uppĂ„tgĂ„ende varma luftflöden. Operationslampor blockerar luftflödet och genererar ett omrĂ„de medlĂ„g lufthastighet som ökar risken för ansamling av kontaminanter.Simuleringsresultaten visade att en ny flĂ€ktmonterad operationslampaminskade kontamineringsnivĂ„n till acceptabel nivĂ„ för infektionskĂ€nslig kirurgi. Den nya flĂ€kten minskade kontaminationen i operationssalen vidsĂ„vĂ€l turbulent som vid laminĂ€rt luftflöde. I en annan studie implementerade vi en skyddande gardin som visadeatt den avsevĂ€rt minskade exponeringsnivĂ„n för det kirurgiska teametunder operation av en patient med infektion i luftvĂ€garna. Dessutomrapporterades en 57 % minskning av den bakteriebĂ€randepartikelkoncentrationen vid sĂ„ret dĂ„ gardinen anvĂ€ndes. SkyddsgardinenförbĂ€ttrar sĂ„ledes sĂ€kerheten bĂ„de för patienten och för operationsteamet. Vi undersökte anvĂ€ndning av diffunderande takventilation pĂ„ kliniker.Diffunderande takventilation Ă€r vanligt förekommandeluftdistributionssystem i kontor och skolor. Baserat pĂ„ simuleringar, gavinnertak med diffunderande tilluft ur central öppning, vid jĂ€mnt fördeladevĂ€rmelaster, den högsta kylkapaciteten och termiska komforten iklinikernas vĂ€ntrum. För visualisering av numeriska simuleringar anvĂ€ndes teknik förvirtuell verklighet. Den virtuella verklighetsmiljön gav ökad upplevelse ochförstĂ„else av luftflödesfĂ€ltet och partikelrörelserna i operationssalar.QC 20220502</p
    corecore